On Nonparametric Statistical Process Control of Univariate Processes

نویسندگان

  • Peihua Qiu
  • Zhonghua Li
چکیده

This paper considers statistical process control (SPC) of univariate processes when the parametric form of the process distribution is unavailable. Most existing SPC procedures are based on the assumption that a parametric form (e.g., normal) of the process distribution can be specified beforehand. In the literature, it has been demonstrated that their performance is unreliable in cases when the pre-specified process distribution is invalid. To overcome this limitation, some nonparametric (or distribution-free) SPC control charts have been proposed, most of which are based on the ordering information of the observed data. This paper tries to make two contributions to the nonparametric SPC literature. First, we propose an alternative framework for constructing nonparametric control charts, by first categorizing observed data and then applying categorical data analysis methods to SPC. Under this framework, some new nonparametric control charts are proposed. Second, we compare our proposed control charts with several representative existing control charts in various cases. Some empirical guidelines are provided for users to choose a proper nonparametric control chart for a specific application. This article has supplementary materials online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Shewhart-type Quality Control Charts in Fuzzy Environment

Nonparametric control charts are presented in order to figure out the problem of detecting changes in the process median (or mean)‎, ‎or changes in the variability process where there is limited knowledge regarding the underlying process‎. ‎When observations are reported imprecise‎, ‎then it is impossible to use classical nonparametric control charts‎. ‎This paper is devoted to the problem of c...

متن کامل

A Generalized Linear Statistical Model Approach to Monitor Profiles

Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...

متن کامل

A nonparametric test of stochastic dominance in multivariate distributions

The literature on statistical test of stochastic dominance has thus far been concerned with univariate distributions. This paper presents nonparametric statistical tests for multivariate distributions. This allows a nonparametric treatment of multiple welfare indicators. These test are applied to a time series of cross-section datasets on household level total expenditure and non labour market ...

متن کامل

New phase II control chart for monitoring ordinal contingency table based processes

In some statistical process monitoring applications, quality of a process or product is described by more than one ordinal factors called ordinal multivariate process. To show the relationship between these factors, an ordinal contingency table is used and modeled with ordinal log-linear model. In this paper, a new control charts based on ordinal-normal statistic is developed to monitor the ord...

متن کامل

The Effect of Gauge Measurement Capability and Dependency Measure of Process Variables on the MCp

It has been proved that process capability indices provide very efficient measures of the capability of processes from many different perspectives. These indices have been widely used in the manufacturing industry for measuring process reproduction capability according to manufacturing specifications. In the past few years, univariate capability indices have been introduced and used to characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Technometrics

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2011